Muon Spin Relaxation Study on the Magnetic Order of π -electrons in the Cesium and Sodium Superoxide

Fahmi Astuti^{1,2}, Dita P. Sari^{1,3}, Retno Asih^{1,3}, Greame Blake⁴, Takashi Kambe⁵, Mizuki Miyajima⁵, Takeshi Kakuto⁵, Takehito Nakano³, Yasuo Nozue³, and Isao Watanabe^{1,2,3}

RIKEN Nishina Center¹, Hokkaido University², Osaka University³, University of Groningen⁴, Okayama University⁵

Alkali metal superoxides (AO_2) are one of ideal model systems to investigate the π -electron magnetism. The KO₂ and RbO₂ systems exhibit the antiferromagnetic (AF) order at temperature of 7 K and 15 K, respectively. Meanwhile, CsO₂ and NaO₂ have been less studied due to the difficulty in synthesizing samples. All AO_2 compounds undergo structural distortions splitting the degeneracy of π^* orbitals causing an magnetic ordered state, so that a magnetically ordered state is expected to appear below in CsO₂ as well [1,2]. In the case of NaO₂, very little is known about spin states at low temperauress while a 1D AF spin chain has again been predicted to form [3].

We have carried out muon-spin-relaxation (μ SR) measurements on CsO₂ and NaO₂ at the RIKEN-RAL Muon Facility in the UK and at the Paul Scherrer Institut (PSI) in Switzerland in order to investigate the magnetic properties of these superoxides. Figure 1 shows the μ SR time spectrum of CsO₂ in the zero-field condition. The appearance of the spontaneous muon-spin precession was observed below 10K indicating the formation of a magnetically ordered state. With further decreasing temperature below 10K, the frequency of muon spin precession became larger indicating the growth of internal fields at muon sites. At this moment, we did not observe any strong signs of the appearance of the magnetic order in NaO₂ down to 0.3K.

Figure 1: μ SR time spectrum of CsO₂ measured in the zero-field condition at various temperatures.

References

- [1] M. Klanjsek, *et al.*: Phys. Rev. Lett. **115**, 057205 (2015).
- [2] S. Riyadi, *et al.*: Phys. Rev. Lett. **108**, 217206 (2012).
- [3] I. Solovyev, et al.: Cryst. Eng. Commn. **16**, 522 (2014).